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Abstract
We present a simple numerical optimization procedure to search for highly
entangled states of 2, 3, 4 and 5 qubits. We develop a computationally tractable
entanglement measure based on the negative partial transpose criterion, which
can be applied to quantum systems of an arbitrary number of qubits. The
search algorithm attempts to optimize this entanglement cost function to find
the maximal entanglement in a quantum system. We present highly entangled
4-qubit and 5-qubit states discovered by this search. We show that the 4-qubit
state is not quite as entangled, according to two separate measures, as the
conjectured maximally entangled Higuchi–Sudbery state. Using this measure,
these states are more highly entangled than the 4-qubit and 5-qubit GHZ states.
We also present a conjecture about the NPT measure, inspired by some of our
numerical results, that the single-qubit reduced states of maximally entangled
states are all totally mixed.

PACS numbers: 02.60.Pn, 03.65.Ud, 03.67.Mn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There are known examples of maximally and highly entangled quantum states of 2 and 3
qubits. Yet for multipartite entanglement of 4 qubits and more, the mathematical structure of
the entangled states is less clear. The 4-qubit Higuchi–Sudbery (HS) state is conjectured, but
not known, to be maximally entangled (at least in some measures of entanglement).

There is an alternative to the analytic approach. Faced with finding an optimum in a
complicated, mathematically intractable space, we at least have an arsenal of numerical search
and optimization techniques to hand.
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In this paper we apply numerical search techniques to hunt down highly entangled multi-
qubit states. This work is exploratory in studying multipartite maximal entanglement across
all possible partitionings of the state.

2. Entanglement measures and cost functions

In order to perform a search, we need a cost function: a measure of the amount of entanglement
in a quantum state. There are several entanglement measures, and their usefulness depends on
the type of analysis to be done. Properties for a good entanglement measure are reviewed in
Horodecki et al (2000) and Horodecki (2001); not all entanglement measures display all these
properties.

2.1. Requirements

We want an entanglement measure for a very specific purpose: to be used as a cost function
in a numerical search algorithm for highly entangled states. This puts certain constraints on
the function, but also allows certain freedoms.

• The cost function must be computationally tractable. It will be evaluated many thousands
of times during each search run. Most proposed entanglement measures in the literature
are computationally intractable.

• The cost function must define a searchable landscape. It must not be so rugged or
discontinuous that the search algorithm is unable to use the information in the cost
function to find improved solutions.

• The cost function must be suitable for mixed as well as pure states.
• The cost function must correspond closely to agreed entanglement measures at high

entanglement, where the search is aiming, but can be rather more approximate at low
entanglement, since we are not searching for such states.

2.2. Negative partial transpose (NPT)

The partial transpose of a density matrix ρ can be used to determine whether the mixed quantum
state represented by ρ is separable. As a result it can also be used to detect entanglement in ρ.

Consider a mixed state ρAB , composed of subsystems A and B. The partial transpose of
ρ with respect to subsystem A is

(ρTA)mµ,nν = ρnµ,mν. (1)

Peres (1996) proves that a necessary condition for separability is that the partial transpose
of ρ has only non-negative eigenvalues. This is also known as the positive partial transpose
(PPT) test. Conversely, if the partial transpose of ρ has one or more negative eigenvalues
then the system is inseparable and contains some degree of entanglement. Such states have a
non-positive partial transpose (NPPT).

The Peres–Horodecki criterion states that PPT is a necessary and sufficient condition for
bipartite states to be separable for Hilbert spaces of size 2 × 2 and 2 × 3. In other cases PPT
is only a necessary condition for separability and Horodecki (1997) shows the existence of
entangled PPT states. Entangled states which maintain positive partial transpose are known
as bound entangled states.

We are not worried by this lack of sufficiency, however. We are interested only in
highly entangled states, so a measure that fails to spot a few lesser entangled states is not
of concern. Given the simplicity and computability of the partial transpose condition, we
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choose to use a cost function based on it, namely the negativity introduced by Życzkowski
et al (1998) and investigated by Vidal and Werner (2002), who demonstrated its monotonicity
under local operations and classical communication (LOCC), and its convexity. This measure
of entanglement was also used in numerical explorations of multipartite states by Kendon
et al (2002).

2.3. Negative partial transpose definition

Consider an n-qubit state in the form

|ψ〉 =
2n−1∑
k=0

ck |k〉 (2)

where the ck ∈ C obey the normalization condition. Each k is a basis state |a1a2 . . . an〉, where
a1a2, . . . , an is the binary representation of the integer k, with ai ∈ {0, 1}.

Construct a density operator of a mixed state ρ using N pure states of the same form
as |ψ〉:

ρ =
N∑

j=1

pj |ψj 〉 〈ψj |. (3)

Expand this out in terms of the individual coefficients.

ρ =
N∑

j=1

pj

1∑
a1...an=0

cj
a1...an

|a1 . . . an〉
1∑

a′
1...a

′
n=0

c
j∗
a′

1...a
′
n
〈a′

1 . . . a′
n| (4)

=
N∑

j=1

pj

1∑
a1...an=0
a′

1...a
′
n=0

d
j

a1...ana
′
1...a

′
n
|a1 . . . an〉 〈a′

1 . . . a′
n| (5)

where d
j

a1...ana
′
1...a

′
n
= c

j
a1...an

c
j∗
a′

1...a
′
n
.

Now construct the partial transpose of ρ with respect to the index i (also known as the cut
set {i}). This is achieved by transposing the bits ai and a′

i in the basis states and reconstructing
the new matrix ρT{i}

ρT{i} =
N∑

j=1

pj

1∑
a1...an=0
a′

1...a
′
n=0

d
j

a1...ai ...ana
′
1...a

′
i ...a

′
n
|a1 . . . a′

i . . . an〉 〈a′
1 . . . ai . . . a′

n| (6)

=
N∑

j=1

pj

1∑
a1...an=0
a′

1...a
′
n=0

d
j

a1...a
′
i ...ana

′
1...ai ...a′

n
|a1 . . . ai . . . an〉 〈a′

1 . . . a′
i . . . a′

n|. (7)

The partial transpose with respect to a larger set of indices (larger cut set) is constructed
similarly, by transposing the bits corresponding to each index in the set.

We can then calculate the eigenvalues of this new matrix ρT{i} to see if it has any negative
eigenvalues indicating entanglement.
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2.4. The relevant cut sets

Each density operator has 2n different partial transposes. The density operator can be
transposed with respect to each subset of indices, or cut, taken from the n qubit cut set.
If the n-qubit computational basis is in the form |a1a2 . . . an〉 then the cut set is the power set
2{a1,a2,...,an}.

Even for an entangled system, some cuts might exhibit no negative eigenvalues.
For example, a system of two individually entangled, but jointly separable subsystems.
Additionally, the more negative eigenvalues, the more entangled the state. Since we want
a measure of entanglement, we should investigate all the possible cuts.

In practice, however, it is unnecessary to compute the partial transpose with respect to
every cut, since certain cuts are equivalent. Only 2n−1 − 1 of the 2n partial transposes need to
be calculated.

Consider the partial transpose of ρ with respect to index 1, ρT{1} . Calculating the
complementary cut with respect to all the other indices together, {2 . . . n}, is redundant,
because ρT{1} and ρT{2...n} have the same eigenvalues. We can neglect the other complementary
cuts similarly, leaving 2n−1 cut sets.

Additionally, we do not need to consider the trivial partial transpose with respect to the
empty cut, ρT{∅} , since this is the original density matrix, which is known to have no negative
eigenvalues.

Hence we need to consider only 2n−1 − 1 partial transposes to find all the negative
eigenvalues.

2.5. The cost function

Once we have all partial transposes with respect to all necessary cuts then any negative
eigenvalues of these new matrices detect entanglement in the state ρ.

There are 2n−1 −1 sets of 2n eigenvalues (not necessarily unique). We take the negation of
the sum of all the negative eigenvalues as our cost function ENPT(ρ), a measure of entanglement
in a given quantum state ρ. (We negate the sum in order to make the result positive. This helps
to make the terminology clearer: we seek to maximize the cost function in order to maximize
the entanglement.) The larger E becomes, the greater the amount of entanglement ρ contains.

It is more conventional to define an entanglement measure to lie between zero (no
entanglement) and one (maximally entangled). We could achieve this by normalizing with
respect to the maximally entangled state, and use ENPT(ρ)

/
Emax

NPT. However, the value Emax
NPT

is unknown for the cases of interest (it is in part what our search is attempting to discover).
Such normalization is unnecessary in our numerical explorations, where we simply need a
monotonic function. Hence we choose to maximize the negated sum of negative eigenvalues,
ENPT.

2.6. NPT entanglement of GHZ states

The n-qubit GHZ state |ψGHZ〉n = 1√
2
(|0〉n + |1〉n) has a simple form of this NPT entanglement

measure.
In every cut, there is a partial transpose containing a 4 × 4 block like




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 (8)
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(multiplied by 1
2 ) and with all other entries zero. So each cut has eigenvalues − 1

2 , 1
2 , 1

2 , 1
2 .

Since we take into account the 2n−1 − 1 distinct cuts, we have

ENPT |ψGHZ〉n = 1
2 (2n−1 − 1). (9)

2.7. Limits of entanglement

We use known results of maximally entangled states of 2 and 3 qubits to provide insights into
our chosen entanglement cost function.

The Peres–Horodecki criterion guarantees that a separable state has no negative
eigenvalues and hence the entanglement measure ENPT = 0 for separable states.

2.7.1. 2 qubits. Consider the maximally entangled 2-qubit state

|ψ+〉 = 1√
2
(|00〉 + |11〉). (10)

Constructing the density operator of |ψ+〉 gives

ρ = |ψ+〉 〈ψ+|
= 1

2 (|00〉 〈00| + |00〉 〈11| + |11〉 〈00| + |11〉 〈11|). (11)

For 2 qubits the 22−1 − 1 = 1 cut is {1}. The partial transpose with respect to this cut is

ρT{1} = 1
2 (|00〉 〈00| + |10〉 〈01| + |01〉 〈10| + |11〉 〈11|). (12)

ρT{1} has a single negative eigenvalue of − 1
2 . So ENPT |ψ+〉 = 0.5.

2.7.2. 3 qubits. We can determine a limit for 3-qubit maximal entanglement from the GHZ
and W states. For 3 qubits the 23−1 − 1 = 3 cuts are {1}, {2} and {3}. Our entanglement
cost function yields different values for entanglement for |ψGHZ〉 = 1√

2
(|000〉 + |111〉) and for

|ψW 〉 = 1√
3
(|000〉 + |010〉 + |001〉).

We have ENPT |ψGHZ〉 = 1.5. Each W-state transpose has a single negative eigenvalue
of −

√
2

3 , and so ENPT |ψW 〉 = √
2 ≈ 1.4142. For three qubits, 1.5 is the maximal possible

entanglement value, since there are only single cuts (one qubit against two), and the maximal
amount in these single cuts is 1

2 .
We examine whether our search procedure for maximal entanglement tends to the limit

of 1.5 and hence a GHZ state, or a limit of
√

2 and hence a W state.

2.7.3. 4 qubits. The 24 − 1 = 7 cuts for 4-qubit partial transposes are {1}, {2}, {3}, {4},
{1, 2}, {1, 3}, {1, 4}.

We have ENPT |ψGHZ〉4 = 7
2 = 3.5.

The highly entangled 4-qubit Higuchi–Sudbery (HS) state is conjectured to be maximally
entangled (Higuchi and Sudbery 2000). The state is

|ψHS〉 = 1√
6
( |1100〉 + |0011〉 + ω(|1001〉 + |0110〉) + ω2(|1010〉 + |0101〉)) (13)

where ω = − 1
2 +

√
3

2 i.
This gives ENPT |ψHS〉 ≈ 6.0981. Our aim is to see if our search technique can equal, or

better, this value.

2.7.4. 5 qubits. The 25 −1 = 15 cuts for 5-qubit partial transposes are {1}, {2}, {3}, {4}, {5},
{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}.

We have ENPT |ψGHZ〉5 = 15
2 = 7.5.

Our aim is to see if our search technique can find a highly entangled 5-qubit state.
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3. The search

3.1. The search algorithm

There are several numerical optimization techniques available (such as hill climbing, simulated
annealing, or genetic algorithms), of differing sophistication. Which to use depends on the
structure of the search space defined by the cost function.

The negativity cost function is convex (Vidal and Werner 2002). So it is relatively smooth,
and increasing towards the surface of the hypersphere defined by the state vectors. This
suggests the simplest form of search, hill climbing, since the convexity means that there is no
chance of being caught in a mixed state local optimum. It remains to be seen if the search
gets caught in a pure state local optimum on the surface of the search hypersphere. We use
hill climbing to maximize ENPT(ρ). The hill climbing algorithm involves repeatedly making
a small random change to the current best solution, and accepting the changed solution if it is
better.

3.2. The search space

The cost function is defined on density matrices, so these constitute the search space. Looking
at equation (3), there are two clear possibilities: confining the search to pure states with N = 1,
or allowing mixed states with N > 1.

Using pure states is equivalent to searching on the surface of a hypersphere, whilst mixed
states allow movement through the interior of the hypersphere, too. We know that there are
multiple different entanglement maxima on the hypersurface (for example, in the 3-qubit case
corresponding to the GHZ and W-states), which might potentially lead to the problem of
getting trapped at an uninteresting local optimum.

So our initial search space comprised mixed states, with N = 2n being sufficient to span
the space. It transpires that the search very rapidly converges to (close to) the hypersurface
of pure states, so we also experimented with a pure state search space, with N = 1
(section 3.6.1).

3.3. The move function

The move function defines how to choose the next point in the search space.
For the mixed state case, the move function chooses a random one of the N state vectors

ψj , and a random one of its (complex) components, c
j

i , and multiplies its real and imaginary
components by the current (real) values of the move sizes δre and δim. The state vector is then
renormalized. The probability pj is multiplied by the current value of the move size δp and
then the probabilities are renormalized.

The various move sizes are each set to a random number between 0.5 and 1.5, and changed
if there have been too many consecutive rejected moves. (We note that hill climbing, along
with most other search algorithms, becomes less efficient as it gets close to an optimum, since
each random move choice becomes more likely to point in the wrong direction. This problem
increases as the number of dimensions increases.)

3.4. The implementation

We used Matlab 6.5 to implement all the matrix manipulations. Outer products, eigenvalues,
complex numbers, and so on, are built in. All we had to implement was the partial transpose
definition, the random state initialization and the move function.
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The move size is set to a random number uniformly distributed in the interval
(1 − α, 1 + α), with α = 0.5. This is changed to a new random number in the same
interval if there have been 500 consecutive rejected moves. The search terminates once there
are 10 000 consecutive rejected moves. The search algorithm is as follows:

initialize N random state vectors ψj , probabilities pj

construct initial density matrix ρ := ρ0

calculate eigenvalues and hence E := E0

α := 0.5;
δre :∈ (1 − α, 1 + α); δim :∈ (1 − α, 1 + α); δp :∈ (1 − α, 1 + α);
t0 := 0; ti := 0;
while t0 < 10000

while ti < 500
apply move function to give ψ ′, ρ ′

calculate eigenvalues and hence E′

if E′ > E then accept move (ψ := ψ ′;E := E′; t0 := 0; ti := 0)
else reject move (+ + t0; + + ti)

end while
ti := 0; reset δs

end while
return ψ,E.

Some optimizations are included. If a probability drops below 10−10, it is set to zero, and that
case drops out of further consideration. If the real or imaginary part of a coefficient drops
below 10−2, it is set to zero. At the end of a search, the result is hand-tweaked, setting any
remaining small coefficients to zero, and used as the input to a further run, to see whether
that improves the result. If appropriate, some algebraic simplification of the result is then
performed.

3.5. Validation

For 2 and 3 qubits, the search discovers the known states, both when started randomly, and
when started close to the known solutions.

For 3 qubits, when started randomly it discovers the maximal GHZ state, rather than the
W state. When started close to the W state, it does converge to that state.

For 4 qubits, when started close to the HS state, it converges to that state.

3.6. Performance

Runs typically converge in 10 000–50 000 generations. Most runs result in some highly
entangled state. Using Matlab 6.5 on a Pentium PC, typically a 2-qubit search takes 3–5 CPU s;
a 3-qubit search takes 10–20 CPU s; a 4-qubit search takes 3–6 CPU min; a 5-qubit search
takes 2–4 CPU h. The running time is exponential in the number of qubits.

3.6.1. Probability evolution. Convergence to a pure state (all but one probability pj tending
to zero) is to be expected, because of the convexity of the negativity function (Vidal and Werner
2002). All the mixed state searches very rapidly converge to a pure state, in approximately
1000 generations. Using a random spread of initial probabilities for the N state vectors nearly
always results in the largest initial probability eventually dominating (figure 1). Using uniform
initial probabilities still results in one probability dominating after a relatively small number
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(a) (b)

Figure 1. Patterns of probability evolution during a search, from an initial mixed state with random
probabilities pj (equation (3)). At the end of the search, one probability is 1, and the others dropped
to zero, indicating a final pure state. (a) Atypically, the initial maximum probability state does
not eventually dominate. (b) More typically, the initial maximum probability state eventually
dominates.

(a) (b)

Figure 2. Typical patterns of probability evolution during a search, from an initial mixed state
with equal probabilities pj (equation (3)). (a) Typical 2-qubit search. (b) Typical 3-qubit search.

of generations compared to the total number for convergence (figure 2). We note that Wei
et al (2003) have performed a more refined investigation of 2-qubit states, searching for the
most entangled state (under various measures of entanglement) with given purity.

On the basis of the observed rapidity of the convergence, we experimented by starting
from an initial random single pure state. The converged results were essentially the same, with
some increase in efficiency (in the calculation of the density matrix). We conclude that we are
no more likely to escape a local optimum on the search hypersphere surface by starting in a
mixed state than a pure state. However, we need not fear such local optima: we are searching
for highly entangled states (good local optima), not only maximally entangled states (global
optima).

3.6.2. State evolution. Using the move function with δ ∈ (0.5, 1.5), the states typically
converge to a near optimum fairly rapidly (figures 3, 4). It can be seen that, even close to
the converged result, the movement can be quite large. However, causing the value of α to
decrease as the search progresses, to force the move function to take smaller steps, has no
appreciable effect on the results.
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(a) (b)

(c) (d )

Figure 3. Typical pattern of evolution of the eventually dominant state component during a 3-qubit
search, here converging to (near to) the state 1+i

2 |000〉 + 1√
2

|111〉. (a) Argand diagram showing

evolution of all state components. (b–d ) Evolution of the real and imaginary parts of selected
components, as a function of iteration number (log scale). The coincident changing of real and
imaginary parts is due to renormalization of the state vector after one of the other components is
changed.

4. Results

4.1. A highly entangled 4-qubit state

4.1.1. A new state. The search procedure resulted (after algebraic simplification) in the
following two highly entangled states:

|�〉 = 1

2
√

2
(i |0010〉 + (1 + i) |0101〉 + |0110〉 + (1 + i) |1000〉 + |1011〉 + i |1111〉)

(14)
ENPT |�〉 = 5.9142

|� ′〉 = i

2
(|0001〉 + |1111〉) +

1

2
√

2
(|0100〉 + |1010〉 + i |0110〉 + i |1000〉)

(15)
ENPT |� ′〉 = 5.9142.

These states are essentially equivalent, and can be reformulated as

|ψ4〉 = 1
2 (|0000〉 + |+011〉 + |1101〉 + |−110〉) (16)

where |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉).
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(a) (b)

Figure 4. Evolution of a highly entangled 4-qubit state, |� ′〉 (section 4.1.1). (a) Evolution of all
16 components. (b) Evolution of 6 components that do not vanish: two end near i

2 , two end at
1

2
√

2
and two end at i

2
√

2
.

The state has 22 negative eigenvalues from 7 partial transposes. For the four single-index
cuts, the partial transposes each have a single negative eigenvalue of − 1

2 . One of the two-
index cuts has six negative eigenvalues of − 1

4 ; the other two two-index cuts each have negative

eigenvalues of − 1
4
√

2
(four times), − 2+

√
2

8 and − 2−√
2

8 . So

ENPT |ψ4〉 = 2 +
√

2 ≈ 5.9142. (17)

4.1.2. Comparison with the GHZ state. We have ENPT |ψGHZ〉4 = 7
2 = 3.5. Hence the state

|ψ4〉 is more entangled, according to the NPT measure.
Note that Chen (2004) claims that the GHZ states are the maximally entangled states.

Our result emphasizes that maximal entanglement is relative to the particular measure of
entanglement chosen (Wei et al 2003). Indeed, with respect to our NPT measure, the state
|ψGHZ〉4 is not even a local maximum: there are nearby states with a higher NPT entanglement
measure.

4.1.3. Comparison with the Higuchi–Sudbery state. The HS state also has 22 negative
eigenvalues from 7 partial transposes. For the four single-index cuts, the partial transposes
also each have a single negative eigenvalue of − 1

2 . But each of the three two-index cuts have
three negative eigenvalues of − 1

2
√

3
and three of − 1

6 . So

ENPT |ψHS〉 = 2 + 3
2

√
3 ≈ 6.0981. (18)

Hence the HS state is more entangled, according to the NPT measure, yet |ψ4〉 does have a
very high measure of entanglement.

When the state |ψHS〉 was conjectured to be maximally entangled, the entanglement
measure used involved taking the average von Neumann entropy of 2-qubit subsystems
(Higuchi and Sudbery 2000), EV N = 1

3 (EAB +EAC +EAD), where EXY = −Tr(ρXY log ρXY ).
(For comparison, the von Neumann entropy of the GHZ state is log2 2 (that is, 1) for every
cut.) The HS state is more entangled than state |ψ4〉 using this measure, too:

EV N |ψHS〉 = 1 + 1
2 log2 3 ≈ 1.7925 (19)
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EV N |ψ4〉 = 5
2 − 1

2
√

2
log2(3 +

√
2) ≈ 1.7426 (20)

EV N |GHZ〉4 = 1. (21)

This is another example of a computationally feasible entanglement measure on a pure state
4-qubit system. (We do not use this measure in our numerical searches, however, because
we also look at mixed states. The von Neumann entropy measure cannot distinguish between
classical and quantum correlations, and so would not help us secure information about the
features we were attempting to capture.)

4.1.4. Observation on the Higuchi–Sudbery state. Since for some reason our search
procedure did not converge to the HS state from a random starting point, we deliberately
seeded the search with an initial state at, and one near, the HS state. Those searches did
converge to the HS state, implying that it is at least a local maximum with respect to the NPT
entanglement measure. The HS state is also a local maximum with respect to the entropy
measure3.

4.2. A highly entangled 5-qubit state

4.2.1. A new state. The search procedure resulted (after algebraic simplification) in the
following two highly entangled states:

|� ′′〉 = 1
2
√

2
(|00 110〉 + |01 011〉 + |10 001〉 + |11 100〉

+ i(|00 101〉 + |01 000〉 + |10 010〉 + |11 111〉))
ENPT |� ′′〉 = 17.5

(22)

|� ′′′〉 = 1
2
√

2
(|00 110〉 + |01 001〉 + |10 101〉 + |11 010〉

+ i(|00 000〉 + |01 111〉 + |10 011〉 + |11 100〉))
ENPT |� ′′′〉 = 17.5.

(23)

These states are essentially equivalent, and can be reformulated as

|ψ5〉 = 1
2 (|000〉 |�−〉 + |010〉 |�−〉 + |100〉 |�+〉 + |111〉 |�+〉) (24)

where |�±〉 = |00〉 ± |11〉 and |�±〉 = |01〉 ± |10〉.
For the five single-index cuts the partial transposes each have a single negative eigenvalue

of − 1
2 . Each of the 10 two-index cuts have six negative eigenvalues of − 1

4 .

4.2.2. Comparison with the GHZ state. We have ENPT |ψGHZ〉5 = 15
2 = 7.5. Hence the state

|ψ5〉 is more entangled, according to the NPT measure.
Recall that the von Neumann entropy for a GHZ state is 1 for every cut. The von Neumann

entropy of |ψ5〉 is also 1 for the single-index cuts, but it is 2 for the two-index cuts. So the
state |ψ5〉 is more highly entangled than the GHZ state, according to the von Neumann entropy
measure too.

We note that the von Neumann entropies of |ψ5〉 reflect the fact that in every cut,
the reduced states are as mixed as they can be, that is, the state of the smaller subset

3 A Higuchi, private communication 2004.
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of qubits is totally mixed—something that has been shown to be impossible for 4 qubits
(Higuchi and Sudbery 2000).

5. Conjecture

We note that for 2-qubit Bell states, the 3-qubit GHZ states (but not the W state), the conjectured
maximally entangled 4-qubit HS state, and our highly entangled 5-quibit |ψ5〉 state, the single-
index cut partial transposes all have a single negative eigenvalue of − 1

2 . This is because the
single-qubit reduced states are all totally mixed. On the basis this partial numerical evidence,
we conjecture that this continues to hold for higher numbers of qubits. That is

Conjecture 1. For an n-qubit state maximally entangled with respect to the NPT entanglement
measure, all single-qubit reduced states are totally mixed.

Note that we conjecture this to be a necessary, but not a sufficient, condition for maximum
entanglement: our highly entangled but not maximally entangled state |ψ4〉, and the non-
maximally entangled states |GHZ〉4 and |GHZ〉5, also enjoy this property.

6. Conclusions

Numerical search has proved to be a richly rewarding topic.
We have successfully found a near-maximally entangled 4-qubit state (equation (16)),

and a highly entangled 5-qubit state (equation (24)), using the ENPT cost function. This cost
function can be used to investigate higher numbers of qubits, but the expense of doing so
increases exponentially (both in the size of matrices being manipulated, and in the number of
cuts to be calculated).

Our numerical investigations support the conclusion that the conjectured maximally
entangled HS state is at least a local maximum. Also, under our NPT measure, the GHZ
states of 4 and 5 qubits are neither maximally entangled nor even local maxima.

We have posed a conjecture that the single-qubit reduced states of maximally entangled
states are all totally mixed.
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Życzkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 On the volume of the set of mixed entangled states

Phys. Rev. A 58 883 (Preprint quant-ph/9804024)


